GATE 2017

Electrical Engineering

(Afternoon Session : 11-02-2017)

Click here for Detailed Solutions

- MADE EASY has taken due care in making solutions. If you find any discrepancy/typo/technical error, kindly share/post your views.
- If you want to contest the answer key given by MADE EASY, kindly post your suggested answer with detailed explanations at MADE EASY facebook ++.
- Students are requested to share their expected marks in GATE 2017.

www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016    |    Ph: 011-45124612, 9958995830

Delhi    |    Hyderabad    |    Noida    |    Bhopal    |    Jaipur    |    Lucknow    |    Indore    |    Pune    |    Bhubaneswar    |    Kolkata    |    Patna
Q.1 In the circuit shown, the diodes are ideal, the inductance is small, and \( I_0 \neq 0 \). Which one of the following statements is true?

(a) \( D_1 \) conducts for greater than 180° and \( D_2 \) conducts for greater than 180°.
(b) \( D_2 \) conducts for more than 180° and \( D_1 \) conducts for 180°.
(c) \( D_1 \) conducts for 180° and \( D_2 \) conducts for 180°.
(d) \( D_1 \) conducts for more than 180° and \( D_2 \) conducts for 180°.

Ans. (a)

Both diodes will conduct for more than 180°.

Q.2 Two resistors with nominal resistance values \( R_1 \) and \( R_2 \) have additive uncertainties \( \Delta R_1 \) and \( \Delta R_2 \) respectively. When these resistances are connected in parallel, the standard deviation of the error in the equivalent resistance \( R \) is
(a) \( \pm \sqrt{\left( \frac{\partial R}{\partial R_1} \Delta R_1 \right)^2 + \left( \frac{\partial R}{\partial R_2} \Delta R_2 \right)^2} \)

(b) \( \pm \sqrt{\left( \frac{\partial R}{\partial R_2} \Delta R_1 \right)^2 + \left( \frac{\partial R}{\partial R_1} \Delta R_2 \right)^2} \)

(c) \( \pm \sqrt{\left( \frac{\partial R}{\partial R_1} \Delta R_2 \right)^2 + \left( \frac{\partial R}{\partial R_2} \Delta R_1 \right)^2} \)

(d) \( \pm \sqrt{\left( \frac{\partial R}{\partial R_1} \Delta R_1 \right)^2 + \left( \frac{\partial R}{\partial R_2} \Delta R_2 \right)^2} \)

Ans. (a)

\[
\sigma_{\text{res}} = \sqrt{\left( \frac{\partial R}{\partial R_1} \right)^2 \sigma_1^2 + \left( \frac{\partial R}{\partial R_2} \right)^2 \sigma_2^2}
\]

\[
= \sqrt{\left( \frac{\partial R}{\partial R_1} \right)^2 \Delta R_1^2 + \left( \frac{\partial R}{\partial R_2} \right)^2 \Delta R_2^2}
\]

Q.3 Let \( x \) and \( y \) be integers satisfying the following equations.

\[
2x^2 + y^2 = 34
\]

\[
x + 2y = 11
\]

The value of \( x + y \) is \[ \text{__________} \].

Ans. (7)

\[
x + 2y = 1,
\]

\[
x = 11 - 2y
\]

\[
2x^2 + y^2 = 34
\]

\[
2(11 - 2y)^2 + y^2 = 34
\]

\[
24^2 + 8y^2 - 88y + y^2 - 34 = 0
\]

\[
9y^2 - 88y + 208 = 0
\]

\[
y = 5.77, 4
\]

\[
x = -0.54,
\]

\[
x = 11 - 2(4) = 3
\]

\[
x = 3, y = 4
\]

\[
x + y = 3 + 4 = 7
\]
“Classroom Course” is designed for comprehensive preparation of ESE, GATE and PSUs. The main feature of the course is that all the subjects are taught from basic level to advance level. There is due emphasis on solving objective and numerical questions in the class. High quality study material is provided during the classroom course with sufficient theory and practice test papers for objective and conventional questions along with regular assignments for practice. Classes are taken by highly experienced professors and ESE qualified toppers. MADE EASY team has developed very effective methodology of teaching and advance techniques and shortcuts to solve objective questions in limited time.”

Features of Classroom Courses:
- Experienced faculty
- Updated study material
- All India ESE offline test series
- Timely completion of syllabus
- Doubt clearing sessions
- Periodic Classroom Tests
- GATE counseling session
- Interview Guidance Program
- Motivational sessions

Book & Reading References:
- Technical Subjects Theory Book
- Technical Subjects Workbook
- Engineering Mathematics
- Reasoning & Aptitude
- Previous Years GATE Solved Papers
- General English
- Previous Years IES Solved Papers (Objective & Conventional)

Syllabus Covered:
- All Technical Subjects along with 10 subjects of paper-I (as per revised syllabus of ESE 2017)
- Engineering Mathematics
- Reasoning & aptitude

New batches starting at all MADE EASY centres

Admission open

www.madeeasy.in
Q.4 In a load flow problem solved by Newton-Raphson method with polar coordinates, the size of the Jacobian is 100 × 100. If there are 20 PV buses in addition to PQ buses and a slack bus, the total number of buses in the system is_____.

Ans. (61)

\[ [J] = [2n - m - 2] \]
\[ 100 = [2n - 20 - 2] \]
\[ n = \frac{100 + 22}{2} = 61 \]

Total number of buses = \( n = 61 \)

Q.5 A stationary closed Lissajous pattern on an oscilloscope has 3 horizontal tangencies and 2 vertical tangencies for a horizontal input with, frequency 3 kHz. The frequency of the vertical input is,

(a) 1.5 kHz  
(b) 2 kHz  
(c) 3 kHz  
(d) 4.5 kHz

Ans. (d)

\[ \frac{f_y}{f_x} = \frac{\text{Horizontal Tangencies}}{\text{Vertical Tangencies}} \]
\[ \Rightarrow \frac{f_y}{3} = \frac{2}{2} \]
\[ \Rightarrow f_y = 4.5 \text{ kHz} \]

Q.6 A phase-controlled, single-phase, full-bridge converter is supplying a highly inductive DC load. The converter is fed from a 230 V, 50 Hz, AC source. The fundamental frequency in Hz of the voltage ripple on the DC side is

(a) 25  
(b) 50  
(c) 100  
(d) 300

Ans. (c)

All even harmonics are present.
Fundamental frequency = \( 2f_s = 2 \times 50 = 100 \text{ Hz} \)
The initial charge in the 1 F capacitor present in the circuit shown is zero. The energy in joules transferred from the DC source until steady state condition is reached equals _______. (Give the answer up to one decimal place.)

Ans. (100)

Consider the following circuit diagram,

After minimizing circuit elements we can have the following circuit,

Here, \( \tau = RC = 5 \text{ sec.} \)

Now current, \( i(t) = \frac{V}{R} e^{-t/\tau} = \frac{10}{3} e^{-t/5} = 2e^{-0.2t} \)

Energy supplied by the source,

\[
E = \int_{0}^{\infty} 10 \times 2e^{-0.2t} \, dt = 100 \text{ J}
\]
Q.8  The transfer function \( C(s) \) of a compensator is given below.

\[
C(s) = \frac{\left(1 + \frac{s}{0.1}\right)\left(1 + \frac{s}{100}\right)}{(1 + s)\left(1 + \frac{s}{10}\right)}
\]

The frequency range in which the phase (lead) introduced by the compensator reaches the maximum is

(a) \( 0.1 < \omega < 1 \)
(b) \( 1 < \omega < 10 \)
(c) \( 10 < \omega < 100 \)
(d) \( \omega > 100 \)

Ans.  (a)

Pole zero diagram of compensator transfer function is shown below.

```
   X
  /|
 / |
 /  |
X----X
```

Maximum phase lead is between 0.1 and 1.

\( 0.1 < \omega < 1 \)

Q.9  The nominal-\( \pi \) circuit of a transmission line is shown in the figure.

```
   Z
  /|
 / |
 /  |
X----X
```

Impedance \( Z = 100\angle 80^\circ \) \( \Omega \) and reactance \( X = 3300 \) \( \Omega \). The magnitude of the characteristic impedance of the transmission line, in \( \Omega \), is________.(Give the answer up to one decimal place.)

Ans.  (406.2)

\[
\begin{align*}
Z &= 100\angle 80^\circ \\
X &= 3300 \ \Omega \\
y &= \frac{1}{X} \implies \frac{1}{3300} \\
y &= \frac{2}{3300} = 6.06 \times 10^{-4} \\
Z_0 &= \sqrt{\frac{Z}{y}} = \sqrt{\frac{100}{6.06 \times 10^{-4}}} = 406.2 \ \Omega
\end{align*}
\]
Q.10  Assume that in a traffic junction, the cycle of the traffic signal lights is 2 minutes of green (vehicle does not stop) and 3 minutes of red (vehicle stops). Consider that the arrival time of vehicles at the junction is uniformly distributed over 5 minute cycle. The expected waiting time (in minutes) for the vehicle at the junction is_______.

Ans. (*)

Q.11  For a 3-input logic circuit shown below, the output Z can be expressed as

![Logic Circuit Diagram]

(a) \( Q + \bar{R} \)  
(b) \( P\bar{Q} + R \)  
(c) \( \bar{Q} + R \)  
(d) \( P + \bar{Q} + R \)

Ans. (c)

\[
Z = \overline{P\bar{Q} \cdot Q \cdot \overline{R}} = \overline{P\bar{Q} + \bar{Q} + \overline{Q} \cdot \overline{R}} \\
= P\bar{Q} + \bar{Q} + QR = \bar{Q}(P+1) + QR \\
= \bar{Q} + QR = (\bar{Q} + Q) \cdot (\bar{Q} + R) = \bar{Q} + R
\]

Q.12  Consider a solid sphere of radius 5 cm made of a perfect electric conductor. If one million electrons are added to this sphere, these electrons will be distributed

(a) uniformly over the entire volume of the sphere
(b) uniformly over the outer surface of the sphere
(c) concentrated around the centre of the sphere
(d) along a straight line passing through the centre of the sphere

Ans. (b)

Added charge (one million electrons) to be solid spherical conductor is uniformly distributed over the outer surface of the sphere.
As per ASSOCHAM & Brands Academy Mains Classroom Program & Mains Test Series Unique, effective, rewarding & dynamic approach

Batches starting from 15th Feb, 2017

Admission Open Candidates may opt for Mains Classroom Program with Mains Test Series or only Mains Test Series

Key Features:

• 300 Hrs. of classes with comprehensive & in-depth discussion on conventional questions.
• Classes to be taken by the group of senior teachers only.
• Well designed comprehensive Mains Exclusive workbooks for every subject which contain 2 sections i.e. unsolved and solved (for self practice).
• Special sessions on improving motivation, writing skills, time management & presentation skills by B. Singh Sir.
• Dynamic test series on every Sunday having test of 3 hours in synchronisation with syllabus taught in the classes exactly on the UPSC pattern and environment.
• Test Series contains Repeat Topics and New Topics to maintain continuity in study.
• Facility to cross check the evaluated answer sheet & access to see the answer sheet of top scorer of every test to compare your performance.
• Provision to interact with teachers, write your missed tests & discuss doubts via online mode using “Facebook ++” (A social learning platform of MADE EASY).
• Provision of reward for top rankers in test series.

Mains Test Series is being conducted at all MADE EASY Centres across India

8 Subjectwise Tests + 4 Full Syllabus Tests = 12 Total Tests

Test Series starting from 12th Mar, 2017 Streams Offered: CE, ME, EE, E&T For batch timing, test schedule, reward programme & online enrollments, visit: www.madeeasy.in

Online Facility to Write Mains Test Series Write Mains Test Series from your home through Facebook ++ (A social learning platform of MADE EASY). Visit: www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, (Sarvapriya Vihar) New Delhi-110016 011-45124612, 9958995830 www.madeeasy.in

Shared on QualifyGate.com
Q.13 The figure shows the per-phase representation of a phase-shifting transformer connected between buses 1 and 2, where $\alpha$ is a complex number with non-zero real and imaginary parts.

For the given circuit $Y_{BUS}$ and $Z_{BUS}$ are bus admittance matrix and bus impedance matrix, respectively, each of size $2 \times 2$. Which one of the following statements is true?
(a) Both $Y_{BUS}$ and $Z_{BUS}$ are symmetric.
(b) $Y_{BUS}$ is symmetric and $Z_{BUS}$ is unsymmetric.
(c) $Y_{BUS}$ is unsymmetric and $Z_{BUS}$ is symmetric.
(d) Both $Y_{BUS}$ and $Z_{BUS}$ are unsymmetric.

Ans. (d)
Both $Y_{BUS}$ and $Z_{BUS}$ are unsymmetrical with transformer.

Q.14 For the given 2-port network, the value of transfer impedance $Z_{21}$ in ohms is ________.

Ans. (3)
where, \[
R_A = 1 \ \Omega \\
R_B = 1 \ \Omega \\
R_C = 1/2 \ \Omega
\]

After rearrangement consider the following circuit,

From the circuit diagram we get,
\[
Z_{p1} = \frac{V_2}{I_1} = 3 \ \Omega
\]

---

Q.15 Consider a function \( f(x, y, z) \) given by
\[
f(x, y, z) = (x^2 + y^2 - 2z^2)(y^2 + z^2)
\]
The partial derivative of this function with respect to \( x \) at the point, \( x = 2, y = 1 \) and \( z = 3 \) is \( \text{________} \).

Ans. (40)
\[
f(x, y, z) = (x^2 + y^2 - 2z^2)(y^2 + z^2)
\]
\[
\frac{\partial f}{\partial x} = (x^2 + y^2 - 2z^2)(0) + (y^2 + z^2)(2x)
\]
\[
= 0 + (y^2 + z^2)(2x)
\]
\[
\Rightarrow \frac{\partial f}{\partial x} \bigg|_{x=2, y=1, z=3} = (1 + 9)2(2) = 40
\]

---

Q.16 When a unit ramp input is applied to the unity feedback system having closed loop transfer function; \( \frac{C(s)}{R(s)} = \frac{Ks + b}{s^2 + as + b} \), \( a > 0, \ b > 0, \ K > 0 \), the steady state error will be,

(a) 0 \hspace{2cm} (b) \frac{a}{b}

(c) \frac{a + K}{b} \hspace{2cm} (d) \frac{a - K}{b}
Ans.  (d)

Close loop transfer function = \( \frac{Ks + b}{s^2 + as + b} \)

Open loop transfer function = \( G(s) = \frac{Ks + b}{s^2 + as + b - Ks - b} \)

\[ G(s) = \frac{Ks + b}{s^2 + as - Ks} = \frac{Ks + b}{s(s + a - K)} \]

Steady state error for ramp input given to type-1 system = \( \frac{1}{K_v} \)

where, velocity error coefficient,

\[ K_v = \lim_{s \to 0} s \cdot \frac{Ks + b}{s(s + a - K)} = \frac{b}{a - K} \]

Steady state error, \( e_{ss} = \frac{a - K}{b} \)

Q.17 If a synchronous motor is running at a leading power factor, its excitation induced voltage \( (E_f) \) is
(a) equal to terminal voltage \( V_t \)  
(b) higher than the terminal voltage \( V_t \)  
(c) less than terminal voltage \( V_t \)  
(d) dependent upon supply voltage \( V_i \)

Ans.  (b)

Synchronous motor-leading p.f. over excited.

\[ \therefore \quad E_f > V \]

---

End of Solution
Q.18  An urn contains 5 red balls and 5 black balls. In the first draw, one ball is picked at random and discarded without noticing its colour. The probability to get a red ball in the second draw is

(a) \( \frac{1}{2} \)  \hspace{1cm} (b) \( \frac{4}{9} \)

(c) \( \frac{5}{9} \)  \hspace{1cm} (d) \( \frac{6}{9} \)

Ans.  (0.5)

\[
P(\text{red}) = \frac{5}{10} \cdot \frac{4}{9} + \frac{5}{10} \cdot \frac{5}{9} = \frac{45}{90} = 0.5
\]

Q.19  The figures show diagramatic representations of vector fields \( X, Y \) and \( Z \), respectively. Which one of the following choices is true?

\( \nabla \cdot X = 0, \nabla \times Y \neq 0, \nabla \times Z = 0 \)

(a) \( \nabla \cdot X = 0, \nabla \times Y \neq 0, \nabla \times Z = 0 \)

(b) \( \nabla \cdot X \neq 0, \nabla \times Y = 0, \nabla \times Z \neq 0 \)

(c) \( \nabla \cdot X \neq 0, \nabla \times Y \neq 0, \nabla \times Z \neq 0 \)

(d) \( \nabla \cdot X = 0, \nabla \times Y = 0, \nabla \times Z = 0 \)

Ans.  (c)

\( X \) is going away so \( \nabla \cdot X \neq 0 \).

\( Y \) is moving circulator direction so \( \nabla \times Y \neq 0 \).

\( Z \) has circular rotation so \( \nabla \times Z \neq 0 \).
Q.20 A 3-phase, 4-pole, 400 V, 50 Hz squirrel-cage induction motor is operating at a slip of 0.02. The speed of the rotor flux in mechanical rad/sec, sensed by a stationary observer, is closest to
(a) 1500   (b) 1470
(c) 157     (d) 154

Ans.  (c)

\[
N_s = \frac{120 \times 50}{4} = 1500 \text{ rpm}
\]

\[s = 0.02\]

\[N = N_s(1 - s) = 1500(1 - 0.02) = 1470 \text{ rpm}\]

As it was specified rotor rmf with respect to stationary part/stator.

Rotor rmf w.r.t. stator is always @ \(N_s\).

\[\therefore \text{ Speed of rotor flux in mechanical radian/sec.} \]

\[\frac{2 \times 3.14 \times 1500}{60} = 157 \text{ rad/sec.}\]

---

Q.21 The figure below shows the circuit diagram of a controlled rectifier supplied from a 230 V, 50 Hz, 1-phase voltage source and a 10:1 ideal transformer. Assume that all devices are ideal. The firing angles of the thyristors \(T_1\) and \(T_2\) are 90° and 270°, respectively.

The RMS value of the current through diode \(D_3\) in amperes is _______

Ans.  (0)

FD will not conduct for resistive load.

---

End of Solution
Q.22 The pole-zero plots of three discrete-time systems \( P \), \( Q \) and \( R \) on the \( z \)-plane are shown below.

Which one of the following is TRUE about the frequency selectivity of these systems?

(a) All three are high-pass filters.
(b) All three are band-pass filters.
(c) All three are low-pass filters.
(d) \( P \) is a low-pass filter, \( Q \) is a band-pass filter and \( R \) is a high-pass filter.

Ans. (b)

For figure 1:

\[ H(z) = \frac{K(z^2 - 1)}{z^2} \]

At low frequency, i.e. \( z = 1 \)
\[ |H(1)| = 0 \]
At high frequency, i.e. \( z = -1 \)
\[ |H(-1)| = 0 \]

Hence filter type is BPF.

For figure 2:

\[ H(z) = \frac{K(z^2 - 1)}{z^2 + 0.25} \]

At low frequency, i.e. \( z = 1 \)
\[ |H(1)| = 0 \]
At high frequency, i.e. \( z = -1 \)
\[ |H(-1)| = 0 \]

Hence filter type is BPF.

For figure 3:

\[ H(z) = \frac{z^2 - 1}{z^2 + 1} \]

At low frequency, i.e. \( z = 1 \)
\[ |H(1)| = 0 \]
At high frequency, i.e. \( z = -1 \)
\[ |H(-1)| = 0 \]

Hence filter type is BPF.
Q.23 Let \( y^2 - 2y + 1 = x \) and \( \sqrt{x} + y = 5 \). The value of \( x + \sqrt{y} \) equals______.

(Give the answer up to three decimal places).

Ans. \( (5.732) \)

\[
\begin{align*}
\left(y - 1\right)^2 &= x \\
\sqrt{x} + y &= 5
\end{align*}
\]

\[
\begin{align*}
y - 1 &= \sqrt{x} \\
y &= 1 + \sqrt{x} \\
y &= 1 + \sqrt{4} = 3
\end{align*}
\]

\[
\begin{align*}
x + \sqrt{y} &= 4 + \sqrt{3} = 5.732
\end{align*}
\]

Q.24 The mean square value of the given periodic waveform \( f(t) \) is ________.

Ans. \( (6) \)

Mean square value = Power of \( f(t) \)

Mean square value = \( \frac{1}{T_0} \int_{T_0} |f(t)|^2 \, dt \)

\[
= \frac{1}{4} \left[ 4^2 \times 1 + 2^2 \times 2 \right]
\]

\[
= \frac{16 + 8}{4} = \frac{24}{4} = 6
\]

Q.25 A three-phase voltage source inverter with ideal devices operating in 180° conduction mode is feeding a balanced star-connected resistive load. The DC voltage input is \( V_{dc} \). The peak of the fundamental component of the phase voltage is

(a) \( \frac{V_{dc}}{\pi} \)  
(b) \( \frac{2V_{dc}}{\pi} \)

(c) \( \frac{3V_{dc}}{\pi} \)  
(d) \( \frac{4V_{dc}}{\pi} \)
Ans. \(b\)

3-\(\Phi\) VSI 180° mode

\[
V_R = \frac{6V_{dc}}{n\pi} \sin \omega t = \frac{2V_{dc}}{n\pi} \sin \omega t
\]

\[
V_R = \frac{2V_{dc}}{\pi} \sin \omega t
\]

Q.26 A \(10^{1.5}\) digit timer counter possesses a base clock of frequency 100 MHz. When measuring a particular input, the reading obtained is the same in:

(i) Frequency mode of operation with a gating time of one second and
(ii) Period mode of operation (in the \(\times 10\) ns scale). The frequency of the unknown input (reading obtained) in Hz is______.

Ans. \((1000000000)\)

1. \(10^{1.5}\) digital timer counter:

Frequency mode of operation: \(f = \frac{n}{t}\)

Let \(f \Rightarrow \) frequency of input signal

Let \(n \Rightarrow \) number of cycles of repetitive signal \(\Rightarrow 100 \times 10^6\)

Let \(t \Rightarrow \) Gate time \(\Rightarrow t = 1 \text{ sec}\)

\[
f = \frac{100 \times 10^6}{1 \text{ sec}} = 10^8 \text{ Hz} = 10^8 \text{cycles/sec.}
\]

On \(10^{1.5}\) digit display \(\Rightarrow 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\)

2. Period mode of operation:

\[
P = \frac{1}{f} = \frac{\frac{1}{n\text{sec}}}{100 \times 10^6} = \frac{1\text{sec}}{100 \times 10^6}
\]

Let, \(P \Rightarrow \) Period of input signal

\[
P = 0.01 \times 10^{-6} = 1 \times 10^{-8}
\]

\[
= 10 \times 10^{-9} = 1 \times 10 \times 10^{-9} = 1 \times 10 \text{ n-sec.}
\]

\[
= 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\
Q.27 For the circuit shown below, assume that the OPAMP is ideal. Which one of the following is TRUE?

(a) \(v_0 = v_s\)  
(b) \(v_0 = 1.5v_s\)  
(c) \(v_0 = 2.5v_s\)  
(d) \(v_0 = 5v_s\)

Ans. (c)

\[V_A = \frac{V_s}{2}\]

\[I_3 = \frac{V_A}{R} = \frac{V_s}{2R}\] ... (i)

\[V_B - V_A = I_3R\]

\[V_B = V_A + I_3R = \frac{V_s}{2} + \frac{V_s}{2} = V_s\]

\[I_2 = \frac{V_B}{R} = \frac{V_s}{2R}\] ... (ii)

\[I_1 = I_2 + I_3\]

\[= \frac{V_s}{R} + \frac{V_s}{2R} = \frac{3V_s}{2R} \quad [1.5]\]

\[V_0 - V_B = I_1R\]

\[\Rightarrow \quad V_0 = V_B + \frac{V_s}{R} \quad [1.5]R = V_s + 1.5V_s = 2.5V_s\]
MADE EASY Students Top in ESE-2016
84% Selections in ESE 2016

4 Streams, 4 Toppers all 4 MADE EASY Students

Jatin Kumar (Civil), M. Idul Ahmad (Mechanical), Gaurav (Electrical), Naveen Sharma (Electronics & Tel.

39 Selections in Top 10
76 Selections in Top 20
505 Selections out of total 604 vacancies

Civil
MADE EASY Selections 182 Out of 225 Vacancies
MADE EASY Percentage 81%

Mechanical
MADE EASY Selections 159 Out of 179 Vacancies
MADE EASY Percentage 89%

Electrical
MADE EASY Selections 86 Out of 106 Vacancies
MADE EASY Percentage 81%

Electronics & Tel.
MADE EASY Selections 78 Out of 94 Vacancies
MADE EASY Percentage 83%

“2 out of every 3 selected students, are from CLASSROOM COURSE”

Detailed results are available at: www.madeeasy.in
Q.28  A thin soap bubble of radius \( R = 1 \) cm, and thickness \( a = 3.3 \) \( \mu \)m \((a \ll R)\), is at a potential of 1 V with respect to a reference point at infinity. The bubble bursts and becomes a single spherical drop of soap (assuming all the soap is contained in the drop) of radius \( r \). The volume of the soap in the thin bubble is \( 4\pi R^2 a \) and that of the drop is \( \frac{4}{3} \pi r^3 \). The potential in volts, of the resulting single spherical drop with respect to the same reference point at infinity is ___________.

(Give the answer up to two decimal places.)

\[ \begin{align*}
\text{Soap Bubble} & \quad \text{Soap drop} \\
R & \quad r \\
\text{Bursts} & \\
\end{align*} \]

**Ans.** (10.03)

After burst, \( 4\pi R^2 a = \frac{4}{3} \pi r^3 \)

\[ \Rightarrow \text{Radius of soap drop} = \left( \frac{3R^2 a}{r^3} \right)^{1/3} = 0.099 \text{ cm} \]

Initial voltage was 1 V and \( C = 4\pi \varepsilon_0 R \)

and initial charge, \( Q = (4\pi \varepsilon_0 R \times 1) \)

since after bursting \( Q \) remain same and \( C = 4\pi \varepsilon_0 r \)

\[ \Rightarrow \text{New potential on soap drop}, \]

\[ V = \frac{Q}{C} = \frac{4\pi \varepsilon_0 R}{4\pi \varepsilon_0 r} = \frac{1}{0.099} = 10.03 \text{ V} \]

Q.29  A 3-phase, 50 Hz generator supplies power of 3 MW at 17.32 kV to a balanced 3-phase inductive load through an overhead line. The per phase line resistance and reactance are 0.25 \( \Omega \) and 3.925 \( \Omega \) respectively. If the voltage at the generator terminal is 17.87 kV, the power factor of the load is _______.

**Ans.** (0.8)

\[ \begin{align*}
V_S - V_R &= I(R \cos \phi + X_L \sin \phi) \\
I &= \frac{P_R}{V_R \cos \phi} \\
\end{align*} \]
\[
V_s - V_R = \frac{P_R}{V_R \cos \phi} (R \cos \phi + X_L \sin \phi)
\]

\[
\tan \phi = \left( \frac{V_s V_R - V_R^2 - R P_R}{X_L P_R} \right)
\]

\[
\phi = \tan^{-1} \left( \frac{V_s V_R - V_R^2 - R P_R}{X_L P_R} \right) \Rightarrow \text{Substitute all values}
\]

Power factor = \cos \phi = 0.8 \text{ lag}

---

**Q.30**

A 3-phase, 2-pole, 50 Hz, synchronous generator has a rating of 250 MVA, 0.8 pf lagging. The kinetic energy of the machine at synchronous speed is 1000 MJ. The machine is running steadily at synchronous speed and delivering 60 MW power angle at a power of 10 electrical degrees. If the load is suddenly removed, assuming the acceleration is constant for 10 cycles, the value of the power angle after 5 cycles is______ electrical degrees.

**Ans. (12.7)**

\[ S = 250 \text{ MVA,} \]
\[ \cos \phi = 0.8 \]
\[ \text{K.E.} = 1000 \text{ MJ} \]
\[ P_o = 60 \text{ MW} \]
\[ \delta_b = 10^\circ \]

\[ t = 10 \text{ cycles} = \frac{10}{50} = 0.2 \text{ sec} \]

\[ t = 5 \text{ cycles} \Rightarrow 0.1 \text{ sec} \]

Load is removed, \[ P_o = 0 \]
\[ P_a = P_m - P_o \]
\[ P_m = 60 \text{ MW,} \]
\[ M = \frac{H S}{180f} = \frac{\text{K.E.}}{180f} = \frac{1000}{180 \times 50} = 0.111 \]
\[ \delta = \frac{P_a}{M} \left( \frac{t_2}{2} \right) \]

\[ \Rightarrow \frac{60}{0.11} \times \frac{0.1^2}{2} = 2.7^\circ \]

So, new ratio
\[ \Rightarrow \delta = 10 + 27^\circ = 12.7^\circ \]

---

**End of Solution**
Q.31 Which of the following systems has maximum peak overshoot due to a unit step input?

(a) \( \frac{100}{s^2 + 10s + 100} \) 
(b) \( \frac{100}{s^2 + 15s + 100} \) 
(c) \( \frac{100}{s^2 + 5s + 100} \) 
(d) \( \frac{100}{s^2 + 20s + 100} \)

Ans. (c)

For maximum peak over shoot \( M_p = \frac{1}{\xi} \)

\( \xi = 0.25 \) for option (c) which is least among all options. Therefore correct option is (c).

--- End of Solution ---

Q.32 If the primary line voltage rating is 3.3 kV(Y side) of a 25 kVA, Y-Δ transformer (the per phase turns ratio is 5 : 1), then the line current rating of the secondary side (in Ampere) is_______.

Ans. (37.88)

From turn ratio,

\[ V_2 = 381 \text{ V/phase} \]
\[ V_2 \text{ line} = 381 \text{ V} \]
\[ \sqrt{3}V_2I_2 = 25000 \]

\[ I_2 = \frac{25000}{\sqrt{3} \times 381} = 37.88 \text{ A} \]

--- End of Solution ---
Q.33  For the circuit shown in the figure below, it is given that \( V_{CE} = \frac{V_{CC}}{2} \). The transistor has 
\( \beta = 29 \) and \( V_{BE} = 0.7 \) V when the B-E junction is forward biased.

For this circuit, the value of \( \frac{R_B}{R} \) is
(a) 43  (b) 92  (c) 121  (d) 129

Ans. (d)

In input loop,
\[
10 = (1 + \beta) I_B \times 4R + I_B \times R_B + 0.7 + (1 + \beta) I_B \times R
\]
\[
10 = 30 I_B \times 4R + I_B \times R_B + 0.7 + 30 \times I_B \times R
\]
\[
9.3 = 150 \times I_B \times R + I_B \times R_B \quad \ldots (i)
\]

Output loop,
\[
10 = (1 + \beta) \times I_B \times 4R + 5 \text{ V} + (1 + \beta) \times I_B \times R
\]
\[
5 = 30I_B \times 4R + 30 \times I_B \times R
\]
\[
5 = 150 \times I_B \times R \quad \ldots (ii)
\]

Using equation (i) and (ii),
\[
I_B R_B = 9.3 - 5 = 4.3
\]

and simultaneously putting value of \( I_B R \) from equation (ii) in equation (i),

\[
9.3 = I_B R \left[ 150 + \frac{R_B}{R} \right]
\]
\[
9.3 = \frac{5}{150} \left[ 150 + \frac{R_B}{R} \right]
\]
\[
279 = 150 + \frac{R_B}{R}
\]
\[
\frac{R_B}{R} = 129
\]
Q.34  The value of the contour integral in the complex-plane

\[ \int \frac{z^3 - 2z + 3}{z - 2} \, dz \]

along the contour \( |z| = 3 \), taken counter-clockwise is

(a) \(-18\pi i\)  
(b) \(0\)  
(c) \(14\pi i\)  
(d) \(48\pi i\)

Ans.  (c)

Pole, \( z = 2 \) lies inside \( |z| = 3 \)

\[ \text{Res} \ f(z) = \lim_{z \to 2} \frac{z^2 - 2z + 3}{z - 2} = 8 - 4 + 3 = 7 \]

By Cauchy residue theorem

\[ I = 2\pi i(7) = 14\pi i \]

Q.35  Two generating units rated 300 MW and 400 MW have governor speed regulation of 6% and 4% respectively from no load to full load. Both the generating units are operating in parallel to share a load of 600 MW. Assuming free governor action, the load shared by the larger units is ______MW.

Ans.  (333)

\[
\begin{align*}
\tan \theta_1 &= \frac{52 - f_2}{P_A} = \frac{52 - 50}{400} = \frac{2}{400} = \frac{1}{200} \\
\theta_2 &= \tan \theta_2 = \frac{53 - f_2}{P_B} = \frac{53 - 50}{300} = \frac{3}{300} = \frac{1}{100}
\end{align*}
\]

By solving (i) and (2)

\[ f_2 = 50.33 \text{ Hz} \]
\[ P_A = 333 \text{ MW} \]
\[ P_B = 267 \text{ MW} \]

Load shared by larger unit = 333 MW
Q.36 The figure below shows a half-bridge voltage source inverter supplying an RL-load with

\[ R = 40 \ \Omega \text{ and } L = \left( \frac{0.3}{\pi} \right) H. \] 

The desired fundamental frequency of the load voltage is 50 Hz. The switch control signals of the converter are generated using sinusoidal pulse width modulation with modulation index, \( M = 0.6 \). At 50 Hz, the RL-load draws an active power of 1.44 kW. The value of DC source voltage \( V_{DC} \) in volts is

\[
\begin{align*}
(a) & \quad 300\sqrt{2} \\
(b) & \quad 500 \\
(c) & \quad 500\sqrt{2} \\
(d) & \quad 1000\sqrt{2}
\end{align*}
\]

Ans. (d)

\[
V_{01\text{peak}} = M \cdot \frac{V_{DC}}{2} \\
V_{01\text{rms}} = \frac{M \cdot V_{DC}}{\sqrt{2}} = M \cdot \frac{V_{DC}}{2\sqrt{2}} \\
V_{01} = \frac{0.6 \cdot V_{dc}}{2\sqrt{2}} \\
|Z_1| = \sqrt{R^2 + (\omega L)^2} = \sqrt{40^2 + (2\pi f \cdot L)^2} \\
= \sqrt{40^2 + (2 \pi \times 50 \times \frac{0.3}{\pi})^2} = \sqrt{40^2 + 30^2} = 50 \\
\phi_1 = \tan^{-1} \frac{\omega L}{R} = \tan^{-1} \frac{30}{40} = 39.869^\circ \\
\phi_1 = 39.869
\]

Active power = \( V_{01} I_{01} \cos \phi_1 = V_{01} \cdot \frac{V_{01}}{|Z_1|} \cdot \cos \phi_1 \)

\[ 1.44 \times 10^3 = \left( \frac{0.3}{\sqrt{2}} V_{DC} \right)^2 \cdot \frac{1}{50} (\cos 36.869^\circ) \]

\[ \therefore \quad V_{DC}^2 = \frac{1.44 \times 10^3 \times 100}{0.3^2 (0.8)} = 20 \times 10^5 \]

\[ V_{DC} = \sqrt{2} \cdot 10^3 = 1000\sqrt{2} \ \text{V} \]
Q.37 A cascade system having the impulse responses $h_1(n) = \{1, -1\}$ and $h_2(n) = \{1, 1\}$ is shown in the figure below, where symbol $\uparrow$ denotes the time origin.

The input sequence $x(n)$ for which the cascade system produces an output sequence $y(n) = \{1, 2, 1, -1, -2, -1\}$ is

(a) $x(n) = \{1, 2, 1, 1\}$  
(b) $x(n) = \{1, 1, 2, 2\}$  
(c) $x(n) = \{1, 1, 1, 1\}$  
(d) $x(n) = \{1, 2, 2, 1\}$

Ans. (d)

Now, $H(n)$ = overall system impulse response

$= h_1(n) * h_2(n)$

$= \{1, -1\} * \{1, 1\}$

$= \{1, 0, -1\}$  

$H(z) = 1 - z^{-2}$

As we know, $H(z) = \frac{Y(z)}{X(z)}$

$\Rightarrow X(z) = \frac{Y(z)}{1 - z^{-2}} = \frac{1 + 2z^{-1} + z^{-2} - 2z^{-4} - z^{-5}}{1 - z^{-2}}$

$= 1 + 2z^{-1} + 2z^{-2} + z^{-3}$

$\Rightarrow x(n) = \{1, 2, 2, 1\}$

---

Q.38 In the circuit shown below, the value of capacitor $C$ required for maximum power to be transferred to the load is

(a) 1 nF  
(b) 1 µF  
(c) 1 mF  
(d) 10 mF
Launches

G.S. Exclusive Batches for Civil Services (Pre) 2017
Under the guidance of Mr. B. Singh; CMD, MADE EASY Group

Batches starting from 20th Feb, 2017 (5:30 PM to 9:30 PM)

Admission Open


Key Features:

- 90 Days course with 3 to 4 hrs classes per day
- Classes to be taken by very renowned faculty group of 6 to 7 experts
- Concise in duration but comprehensive in discussion
- Targeted, focused and current based approach
- Affordable fee and focus on individual support
- Provision of regular interaction with faculty, through MADE EASY Online social learning platform
- Regular assessment of performance through well designed class tests

Fee: Rs. 31,500/-
Special Discount of Rs. 5000/- for MADE EASY Students

Admission Office:
44-A/1, Kalu Sarai,
New Delhi-110016

8800338066
Ans. (d)

\[ Z_{load} = \frac{1}{Cs} + Ls = \frac{1}{1 + \frac{1}{Cs}} + Ls = \frac{(1 - Cs)}{1 - C^2s^2} + Ls \]

The frequency at which the load is resistive and it is equal to 0.5 \( \Omega \) i.e. The load is resistive means, the imaginary part of the load is equal to zero and real part is equal to 0.5 \( \Omega \).

\[ Z_{load} = \frac{1}{1 + Cs^2} \]

Put \( s = j\omega \);
\[ Z_{load} = \frac{1}{1 + \omega^2 C^2} = 0.5 \]

\[ \omega = 100 \text{ r/s} \]
\[ C = 10 \text{ mF} \]

End of Solution

Q.39 A 120 V DC shunt motor takes 2 A at no load. It takes 7 A on full load while running at 1200 rpm. The armature resistance is 0.8 \( \Omega \), and the shunt field resistance is 240 \( \Omega \). The no load speed, in rpm, is_______.

Ans. (1241.81)

Shunt motor take 7 A on full load and runs @ 1200 rpm.

\[ E_{p1} = 120 - 65(0.8) \]
\[ E_{p1} = 114.8 \text{ V} \]
\[ N_1 = 1200 \text{ rpm} \]

Shunt motor takes 2 A @ no load
For shunt motor, 
\[ \frac{N_2}{N_1} = \frac{E_{b2}}{E_{b1}} \]
\[ \therefore \quad N_2 = \frac{118.8}{114.8} \times 1200 = 1241.81 \text{rpm} \]

**Q.40** For the network given in figure below, the Thevenin’s voltage \( V_{ab} \) is

\( 6 \) \( 5 \) \( 10 \) \( 10 \) \( 16 \)

(a) \(-1.5 \text{ V}\) \quad (b) \(-0.5 \text{ V}\)
(c) 0.5 V \quad (d) 1.5 V

**Ans. (a)**

Consider the following circuit,

After rearrangement we get,

From circuit using KCL,

Voltage,
\[ \frac{V_{15} + 30}{15} + \frac{V_{15} - 8}{5} = 0 \]
\[ V_{15} + 30 + 3V_{15} - 24 = 0 \]
\[ V_{15} = -1.5 \text{ V} \]
Q.41 In the circuit shown all elements are ideal and the switch S is operated at 10 kHz and 60% duty ratio. The capacitor is large enough so that the ripple across it is negligible and at steady state acquires a voltage as shown. The peak current in amperes drawn from the 50 V DC source is ______. (Give the answer up to one decimal place.)

Ans. \(40\)

Buckboost converter

\[
V_0 = \frac{\alpha V_S}{1 - \alpha} \\
V_S = 50 \text{ V} \\
\alpha = 0.6 \\
V_0 = 75 \text{ V} \\
\frac{V_0}{V_S} = \frac{I_S}{I_0} = \frac{0.6}{1 - 0.6} = \frac{0.6}{0.4} = \frac{3}{2} \\
I_0 = \frac{V_0}{R} = \frac{75}{5} = 15 \text{ A} \\
I_S = \frac{\alpha}{1 - \alpha} \cdot I_0 = \frac{3}{2} \times 15 = 22.5 \text{ A}
\]

(Since capacitor is very large \(i_c = 0\) at steady state)

Since capacitor is very large \(i_c = 0\) at steady state

\[
(i_L)_{avg} = (i_S)_{avg} + (i_0)_{avg} \\
I_L = I_S + I_0 \\
I_L = 22.5 + 15 = 37.5 \text{ A}
\]

\[
\Delta I_L = \frac{\alpha V_S}{R} = \frac{0.6 \times 50}{10 \times 10^3 \times (0.6 \times 10^{-3})} = 5 \text{ A}
\]

\[
(i_L)_{peak} = I_L + \frac{\Delta I_L}{2} = 37.5 + \frac{5}{2} = 40 \text{ A}
\]

\[
\therefore \text{ Peak value of current drawn from source} = (i_L)_{peak} = 40 \text{ A}
\]
Q.42 In the circuit shown in the figure, the diode used is ideal. The input power factor is \( \ldots \) (Give the answer up to two decimal places.)

\[ 100 \sin (100 \pi t) \ V \]

\[ 10 \ \Omega \]

Ans. \( (0.707) \)

\[ V_{cr} = \frac{V_m}{2} \]

\[ \text{PF} = \frac{V_{cr}}{V_{fr}} = \frac{V_m / 2}{V_m / \sqrt{2}} = \frac{1}{\sqrt{2}} = 0.707 \]

\[ \text{PF} = 0.707 \]

Q.43 Consider an overhead transmission line with 3-phase, 50 Hz balanced system with conductors located at the vertices of an equilateral triangle of length \( D_{ab} = D_{bc} = D_{ca} = 1 \) m as shown in figure below. The resistances of the conductors are neglected. The geometric mean radius (GMR) of each conductor is 0.01 m. Neglecting the effect of ground, the magnitude of positive sequence reactance in \( \Omega/\text{km} \) (rounded off to three decimal places) is \( \ldots \) .

Ans. \( (0.289) \)
\[ X_i = 2\pi f L \]
\[ = 2\pi f \times 2 \times 10^{-7} \ln \left( \frac{D_m}{D_s} \right) \]
\[ = 2\pi \times 50 \times 2 \times 10^{-7} \ln \left( \frac{1}{0.01} \right) \]
\[ = 2.89 \times 10^{-4} \, \Omega/m \]
\[ X_i = 0.289 \, \Omega/km \]

Q.44 The root locus of the feedback control system having the characteristic equation \( s^2 + 6Ks + 2s + 5 = 0 \) where \( K > 0 \), enters into the real axis at
(a) \( s = -1 \)  
(b) \( s = -\sqrt{5} \)  
(c) \( s = -5 \)  
(d) \( s = \sqrt{5} \)

Ans. (b)

\[ GH(s) = \frac{6Ks}{s^2 + 2s + 5} \]

The point at which root locus enters real axis (breakaway point) is given by
\[
\frac{dK}{ds} = 0
\]
\[
K = -\frac{(s^2 + 2s + 5)}{6s}
\]
\[
\frac{dK}{ds} = 0 \Rightarrow s = \pm \sqrt{5}
\]
\[ \therefore s = -\sqrt{5} \]

Q.45 The eigenvalues of the matrix given below are
\[
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -3 & -4 \\
\end{bmatrix}
\]
(a) \(0, -1, -3) \)  
(b) \(0, -2, -3) \)  
(c) \(0, 2, 3) \)  
(d) \(0, 1, 3) \)
Ans. (a)
The characteristics equation is $|A - \lambda I| = 0$

$$\begin{vmatrix} 0 - \lambda & 1 & 0 \\ 0 & 0 - \lambda & 1 \\ 0 & -3 & -4 - \lambda \end{vmatrix} = 0$$

$-\lambda(4\lambda + \lambda^2 + 3) - 1(0 - 0) = 0$

$-\lambda(\lambda^2 + 4\lambda + 3) = 0$

$\lambda = 0$, $(\lambda + 1)(\lambda + 3) = 0$

$\lambda = -1, -3$

$\lambda = (0, -1, -3)$

Q.46 A person decides to toss a fair coin repeatedly until he gets a head. He will make at most 3 tosses. Let the random variable $Y$ denote the number of heads. The value of $\text{var}\{Y\}$, where $\text{var}\{\}$ denotes the variance, equals

(a) $\frac{7}{8}$  
(b) $\frac{49}{64}$  
(c) $\frac{7}{64}$  
(d) $\frac{105}{64}$

Ans. (c)

<table>
<thead>
<tr>
<th>$y$</th>
<th>No. of Heads</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(y)$</td>
<td>1/8</td>
<td>7/8</td>
<td></td>
</tr>
</tbody>
</table>

$E(y) = 0 \times \frac{1}{8} + 1 \times \frac{7}{8} = \frac{7}{8}$

$E(y^2) = 0^2 \left(\frac{1}{8}\right) + 1^2 \times \frac{7}{8} = \frac{7}{8}$

Variance ($y$) = $E(y^2) - (E(y))^2$

$= \frac{7}{8} - \frac{49}{64} = \frac{56 - 49}{64} = \frac{7}{64}$

Q.47 A star-connected, 12.5 kW, 208 V (line), 3-phase, 60 Hz squirrel cage induction motor has following equivalent circuit parameters per phase referred to the stator: $R_1 = 0.3$ Ω, $R_2 = 0.3$ Ω, $X_1 = 0.41$ Ω, $X_2 = 0.41$ Ω. Neglect shunt branch in the equivalent circuit. The starting current (in Ampere) for this motor when connected to an 80 V (line), 20 Hz, 3-phase AC source is _______.

End of Solution
Ans. (70.05)
Equivalent circuit representation during starting – according to question.

\[ \begin{align*}
0.3 \Omega & \quad 0.41 \Omega \\
0.3 \Omega & \quad 0.41 \Omega \\
\frac{80}{\sqrt{3}} V & \quad \text{At starting } s = 1, \ R_L = 0
\end{align*} \]

Total resistance reference to stator = 0.6 \ \Omega \\
Total reactance reference to stator = 0.82 \ \Omega \\
Reactance for 60 Hz → 0.82 \ \Omega \\
Reactance for 20 Hz → ?

\[ \therefore \quad X_e \propto f \quad \text{Reactance for 20 Hz} \Rightarrow \frac{20}{60} \times 0.82 \]

\[ \therefore \quad X \text{ for 20 Hz frequency} = 0.273 \ \Omega \]

\[ \therefore \quad \text{Starting current} \Rightarrow I_{st} = \frac{80\sqrt{3}}{\sqrt{(0.6)^2 + (0.273)^2}} = 70.05 A \]

---

Q.48
A 220 V, 10 kW, 900 rpm separately excited DC motor has an armature resistance \( R_a = 0.02 \ \Omega \). When the motor operates at rated speed and with rated terminal voltage, the electromagnetic torque developed by the motor is 70 Nm. Neglecting the rotational losses of the machine, the current drawn by the motor from the 220 V supply is

(a) 34.2 A 
(b) 30 A 
(c) 22 A 
(d) 4.84 A

Ans. (30)
Neglecting rotor loss,
\[ E_d / \omega = 10 \ kW \]
\[ (V - I_a R_a) I_a = 10 \ kW \]
\[ [220 - I_a(0.02)] I_a = 10000 \]
\[ 220I_a - 0.02I_a^2 - 10000 = 0 \]
\[ 0.02I_a^2 - 220I_a + 10000 = 0 \]
By solving, \( I_a = 45.75 \ A \)
Torque corresponding,
\[ T = \frac{60}{2\pi} E_d I_a \]
\[ \therefore \quad T = \frac{60}{2\pi(900)} 10000 = 106.15 \ \text{N-m} \]
Separately excited motor,
\[ T \propto I_a \]
For a torque 106.15 N-m,
\[ I_a = 45.75 \text{ A} \]
For a torque 70 N-m,
\[ I_a = ? \]
New,
\[ I_a = \frac{70 \times 45.75}{106.15} = 30.16 \text{ A} \]

Q.49
Let \( g(x) = \begin{cases} x, & x \leq 1 \\ x+1, & x \geq 1 \end{cases} \) and \( f(x) = \begin{cases} 1-x, & x \leq 0 \\ x^2, & x > 0 \end{cases} \).

Consider the composition of \( f \) and \( g \) i.e. \( (f \circ g)(x) = f(g(x)) \). The number of discontinuities in \( (f \circ g)(x) \) present in the interval \( (-\infty, 0) \) is:
(a) 0  
(b) 1  
(c) 2  
(d) 4  

Ans. (a)  
\[ f(x) = 1-x; \ x < 0 \]
\[ g(x) = -x; \ x < 0 \]
(Both are continuous for \( x < 0 \))
\[ \therefore \ f(g(x)) \text{ is continuous for } x < 0 \]

The composite function of two continuous function is always continuous.
Therefore the number of discontinuities are zero.

Q.50
Consider the system described by the following state space representation:
\[
\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)
\]
\[ y(t) = [1 \ 0] \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \]

If \( u(t) \) is a unit step input and \( \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \), value of output \( y(t) \) at \( t = 1 \) sec (rounded off to three decimal places) is______.
Exclusive Batches for
G.S. & Engineering Aptitude
ESE 2018 Prelims : Paper - I

Syllabus Covered:

1. Current issues of national and international importance relating to social, economic and industrial development.
3. Standards and Quality practices in production, construction, maintenance and services.
7. Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology based education.
8. Ethics and values in Engineering profession.

Batches Starting at Delhi & Noida Centres

<table>
<thead>
<tr>
<th>Venue</th>
<th>Batch Type</th>
<th>Batch Commencement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noida</td>
<td>Weekend</td>
<td>25th Feb, 2017</td>
</tr>
<tr>
<td>Delhi</td>
<td>Weekend</td>
<td>25th Feb, 2017</td>
</tr>
<tr>
<td>Delhi</td>
<td>Regular</td>
<td>20th Feb, 2017</td>
</tr>
</tbody>
</table>

Admission Open

www.madeeasy.in
Ans. (1.284)
\[
\begin{align*}
\mathbf{y}(t) &= [1 \ 0] \mathbf{x}(t) \\
\mathbf{x}(t) &= L^{-1}[(sI - A)^{-1}] \mathbf{x}(0) + L^{-1}[(sI - A)^{-1}] \mathbf{B} \mathbf{u}(s)
\end{align*}
\]
\[
L^{-1}[(sI - A)^{-1}] \mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]
\[
L^{-1}[(sI - A)^{-1}] \mathbf{B} \mathbf{u}(s) = \begin{bmatrix} -0.25 + 0.5t + 0.25e^{-2t} \\ 0.5 - 0.5e^{-2t} \end{bmatrix}
\]
\[
\therefore \quad \mathbf{x}(t) = \begin{bmatrix} 0.75 + 0.5t + 0.25e^{-2t} \\ 0.5 - 0.5e^{-2t} \end{bmatrix}
\]
\[
\therefore \quad \mathbf{y}(t) = 0.75 + 0.5t + 0.25e^{-2t} = 0.75 + (0.5 \times 1) + 0.25(e^{-2})
\]
\[
\therefore \quad \mathbf{y}(1) = 1.284
\]

Q.51 A 25 kVA, 400 V, \( \Delta \)-connected, 3-phase, cylindrical rotor synchronous generator requires a field current of 5 A to maintain the rated armature current under short-circuit condition. For the same field current, the open-circuit voltage is 360 V. Neglecting the armature resistance and magnetic saturation, its voltage regulation (in % with respect to terminal voltage), when the generator delivers the rated load at 0.8 pf leading, at rated terminal voltage is______.

Ans. (-0.145)

25 kVA, 400 V, \( \Delta \)-synchronous generator

\[
\therefore \quad I_{\text{rated}} = \frac{25000}{\sqrt{3} \times 400} = 36.085 \text{ A}
\]
\[
I_{\text{phase}} = \frac{36.085}{\sqrt{3}} = 20.83 \text{ A}
\]
\[
X_s = \frac{V_{OC}}{I_{\text{rated}}} = \frac{V_{OC}}{I_{\text{same}}}
\]
\[
\therefore \quad X_s = \frac{360}{20.83} = 17.28 \Omega/\text{phase}
\]
\[
E = \sqrt{V \cos \phi + I_a R_a}^2 + (V \sin \phi - I_a X_s)^2
\]
\[
= \sqrt{(400 \times 0.8)^2 + (400 \times 0.6 - 20.83(17.28))^2}
\]
\[
= \sqrt{(102400) + (240 - 360)^2} = 341.76 \text{ V}
\]
\[
\therefore \quad \% \text{V.R.} = \frac{E - V}{V} \times 100
\]
\[
= \frac{341.76 - 400}{400} \times 100 = -0.145\%
\]
Q.52 The output $y(t)$ of the following system is to be sampled, so as to reconstruct it from its samples uniquely. The required minimum sampling rate is

$$h(t) = \frac{\sin(1500\pi t)}{\pi t}$$

(a) 1000 samples/s  
(b) 1500 samples/s  
(c) 2000 samples/s  
(d) 3000 samples/s

Ans. (b)

From the above block diagram,

$$Z(t) = x(t) \cos 1000\pi t$$

By using modulation property of Fourier transform,

$$Z(\omega) = \frac{1}{2} \left[ X(\omega + 1000\pi) + X(\omega - 1000\pi) \right]$$

Now,

$$h(t) = \frac{\sin 1500\pi t}{\pi t} = 1500 \text{sinc}(1500\pi t)$$

Thus, $H(\omega)$ is a low pass filter and it will pass frequency, component of $Z(\omega)$ up to $1500\pi$ rad/sec.
Thus,

Therefore, maximum frequency component of $y(t)$ is
\[ \omega_m = 1500\pi \text{ rad/sec} \]

or
\[ f_m = 750 \text{ Hz} \]

So, the minimum sampling rate for $y(t)$ is
\[ f_s \text{ min} = 2 \times f_m = 2 \times 750 = 1500 \text{ Hz} \]
\[ = 1500 \text{ samples/sec} \]

---

**Q.53** The range of $K$ for which all the roots of the equation $s^3 + 3s^2 + 2s + K = 0$ are in the left half of the complex $s$-plane is

(a) $0 < K < 6$
(b) $0 < K < 16$
(c) $6 < K < 36$
(d) $6 < K < 16$

**Ans. (a)**

From the given equation,
\[ s^3 + 3s^2 + 2s + K = 0 \]

Using Routh’s criterion, we get
\[ K < 6 \text{ and } K > 0 \]

or
\[ 0 < K < 6 \]

---

**Q.54** For the balanced Y-Y connected 3-phase circuit shown in the figure below, the line-line voltage is 208 V rms and the total power absorbed by the load is 432 W at a power factor of 0.6 leading.

The approximate value of the impedance $Z$ is

(a) $33 \angle -53.1^\circ \, \Omega$
(b) $60 \angle 53.1^\circ \, \Omega$
(c) $60 \angle -53.1^\circ \, \Omega$
(d) $180 \angle -53.1^\circ \, \Omega$
Ans. (c)
For star connection,

\[ P_{3\Phi} = \frac{V_L^2}{Z} \cos \phi \]

\[ |Z| = \frac{V_L^2}{P_{3\Phi}} \cos \phi = 60 \Omega = \frac{208^2}{430} \times 0.6 \]

\[ \cos \phi = 0.6 \text{ lead} \]

\[ \phi = 53.13^\circ \]

\[ \therefore \]

\[ Z = 60 \angle -53.13^\circ \Omega \]

Q.55 For the synchronous sequential circuit shown below, the output \( Z \) is zero for the initial conditions \( Q_AQ_BQ_C = Q_A'Q_B'Q_C' = 100 \).

![Synchronous Sequential Circuit Diagram]

The minimum number of clock cycles after which the output \( z \) would again become zero is ________________.

Ans. (6)

<table>
<thead>
<tr>
<th>Clock</th>
<th>( Q_A )</th>
<th>( Q_B )</th>
<th>( Q_C )</th>
<th>( Q_A' )</th>
<th>( Q_B' )</th>
<th>( Q_C' )</th>
<th>( Q_A \oplus Q_A' )</th>
<th>( Q_B \oplus Q_B' )</th>
<th>( Q_C \oplus Q_C' )</th>
<th>( Z )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The output \( Z \) will again become zero after 6 clock cycles.
GENERAL ABILITY

Q.1 There are 3 red socks, 4 green socks and 3 blue socks. You choose 2 socks. The probability that they are of the same colour is
(a) 1/5  (b) 7/30  
(c) 1/4  (d) 4/15

Ans.  (d)

Q.2 Choose the option with words that are not synonyms.
(a) aversion, dislike  (b) luminous, radiant  
(c) plunder, loot  (d) yielding, resistant

Ans.  (d)

Q.3 There are five buildings called V, W, X, Y and Z in a row (not necessarily in that order). V is to the West of W, Z is to the East of X and the West of V. W is to the West of Y. Which is the building in the middle?
(a) V  (b) W  
(c) X  (d) Y

Ans.  (a)

Q.4 Saturn is ______ to be seen on a clear night with the naked eye.
(a) enough bright  (b) bright enough  
(c) as enough bright  (d) bright as enough

Ans.  (b)

Enough is an adverb. It is usually positioned after the adjective/adverb it modifies.

Q.5 A test has twenty questions worth 100 marks in total. There are two types of questions. Multiple choice questions are worth 3 marks each and essay questions are worth 11 marks each. How many multiple choice questions does the exam have?
(a) 12  (b) 15  
(c) 18  (d) 19

Ans.  (b)
Q.6  The number of roots of \( e^x + 0.5x^2 - 2 = 0 \) in the range \([-5, 5]\) is
(a) 0  (b) 1  (c) 2  (d) 3

Ans. (c)

Q.7  An air pressure contour line joins locations in a region having the same atmospheric pressure. The following is an air pressure contour plot of a geographical region. Contour lines are shown at 0.05 bar intervals in this plot.

If the possibility of a thunderstorm is given by how fast air pressure rises or drops over a region, which of the following regions is most likely to have a thunderstorm?
(a) P  (b) Q  (c) R  (d) S

Ans. (c)

Q.8  “We lived in a culture that denied any merit to literary works, considering them important only when they were handmaidens to something seemingly more urgent—namely ideology. This was a country where all gestures, even the most private, were interpreted in political terms.”

The author’s belief that ideology is not as important as literature is revealed by the word:
(a) ‘culture’  (b) ‘seemingly’
(c) ‘urgent’  (d) ‘political’

Ans. (c)
Q.9 \( X \) is a 30 digit number starting with the digit 4 followed by the digit 7. Then the number \( X^3 \) will have
(a) 90 digits (b) 91 digits
(c) 92 digits (d) 93 digits
Ans. (a)

Q.10 There are three boxes. One contains apples, another contains oranges and the last one contains both apples and oranges. All three are known to be incorrectly labelled. If you are permitted to open just one box and then pull out and inspect only one fruit, which box would you open to determine the contents of all three boxes?
(a) The box labelled ‘Apples’
(b) The box labelled ‘Apples and Oranges’
(c) The box labelled ‘Oranges’
(d) Cannot be determined
Ans. (b)